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ADMISSIBLE FUNCTIONS
WITH MULTIPLE DISCONTINUITIES

BY
ISHAI OREN

ABSTRACT

Let T be the unit circle, a irrational and F : T — R a step function. A necessary
and sufficient condition for the skew of the a-rotation by f (considered as taking
values mod 1) to be minimal is given. Also, the boundedness of 27_, f(x + ia)
—n [, f(z)dz as n— a is resolved.

1. Introduction

The concept of an admissible function has been very useful in the analysis of
the dynamical nature of skew products (cf. [4], [3], [1]). One of the restrictions
imposed on these functions is that there be a point of discontinuity whose orbit
does not intersect the set of discontinuities at any other point. The purpose of
this paper is to replace this condition by a more careful analysis of the net effect
of the discontinuities along orbits. We shall work on the circle group, where
admissible functions have been of greatest use.

Consider T = [0, 1) endowed with the compact group structure obtained from
identification with R/Z, and let a« € T be irrational (a shall at times also be
considered as an element of R). Let f: T—R be a step function, i.e. locally
constant with a finite number of jump discontinuities. We shall adopt the
convention that all step functions are continuous from the right. Define
6:6:T—R by

S(x)=f(x")=f(x)=lim f(x + &)~ f(x —¢),
andlet D=D;, ={x € Tl‘o‘(x);éO}. Since D is finite,

Ax) = Ar(x)= 3 8 (x +ia)

i=—x
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is well defined for every x € T. Finally, for n >0 set F,(x)= 2.4 f(x +ia).

The first and simpler of the two questions we deal with is the boundedness of
{F,(x)—n [rf(z)dz}:-, for somejevery x € T. The case f(x) = lyg(x) was first
treated by Kesten, and f(x) = ljns(x)— 1,54-4(x) by Furstenberg, Keynes and
Shapiro [1]. In fact, we have

THEOREM A. {F.(x)~n [+f(z)dz},., is bounded for some/every x € T if
and only if A(-)=0.

The theorems of Kesten and Furstenberg-Keynes—Shapiro follow as special
cases of Theorem A.

To prove Theorem A we pass to the standard symbolic model in which f is
made continuous. It is defined as follows: Let A ={v,,---, v} be the set of
values taken by f. Let Q= A" be endowed with the product topology, and
o : Q— Q be the left shift, i.e. o(s)[i]=s[i+ 1], s EQ, i EZ. Define ¢ : T — (1
by @(x)[i]=f(x +ia), and let T CQ be the closure of ¢(T).

Then T is invariant under o, and ("f,(r) is a minimal flow. The last follows
most easily from the uniform density of the orbits x,x +a, -+, in T. Lastly,
define f(s)=s[0] and F.(s) =20 f(a's).

The proof of Theorem A is a straightforward generalization of the methods
used for admissible functions with simple discontinuities. The next result
however departs more radically from this vein.

In what follows and throughout this paper if Z C%CR is a group, then
%' C T denotes the factor group 9%/Z considered as a subgroup of T. Similarly
Vr R, r' € T is the coset r + Z. Yo will denote the group scaled by a factor of
a, unless ¢ =Z, whence (Za ) is usually meant. Also, given any set of generators
in R or T, by the generated group we shall always mean the closed group
generated by the set.

So let E C R be the group generated by the values of f and 1. Of course E =R
unless f takes on only rational values, in which case E is a rational lattice. Set
X =T x E' and define T: X — X by

T(s,y)= (o5, y + f(s)).

We wish to determine the minimality of (X, T).
To this end let G C R be the group generated by {A(z)}.ep U {1}. We define
the G-essential value of f as the element of R/(G + Ga) given by

e(f):(Lf(z)dz+ > zA(z)>+G+Ga.

z2+Za€T/Za
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e(f) is determined by picking z,,- - -, z; ER such that z; — z;& Za mod | for i # j,
and VZED, z -z, EZa mod | for some i. Then [;f(z)dz +Z|., z;A(z) is
independent of the choice of z,,- - -, z, up to an element of G + Ga, showing that
e(f) is well defined. To avoid overly cumbersome notation, we shall consider
e(f) as an element of R, taking any representative. All calculations with e (f) will
of course be eventually free of this choice.

A necessary and sufficient condition for (X, T') to be minimal can now be given
as

THEOREM B. (X, T) is minimal if and only if for every proper closed subgroup
GCSGE e(f)ES + Sa.

The minimality condition can be less cleanly but more clearly stated as
follows. If E =R then (X, T) is minimal if and only if either G =R or
e(f)€ O + Qa. In case E is a rational lattice, we shall see that one can always
write e(f)=a + ba, with a,b € E. The condition is then that g, b and G
generate E.

The paper is organized as follows. Theorem A is proved in section 2. Section 3
starts with Proposition C, which provides a decomposition of f(-) that makes
clear the significance of e(f). Theorem B is then proved, followed by some
examples, the first of which being the demonstration that if f has only single
discontinuities, then (X, T) is always minimal.

2. Whenis {F.(x)—n frf(z)dz};-, bounded?

Proor oF THEOREM A. We may assume without loss of generality that
Jrf(z)dz =0. Then suppose first that A(z)=0 Vz € T. Let K =0 be minimal
such that (D +i)ND = Vi z K. For n z2K let D, C T be the set of points
at which F, (- ) is discontinuous. Obviously D, C U/, (D — ia). We claim in fact
that D, C U2 (D —ia)UU[._.(D - ia). For this it suffices to show that
D.NU/ " (D-ia)=@. But if x€ U/, (D —ia), then 37} 8(x +ia)=
2. 28(x +ia)=0. Thus x€ D,.

The above shows that F, (- ) has at most 2K | D | discontinuities, the jumps at
which belong to a finite set. Since [+ F, (z)dz =0, this implies that the F,’s are
uniformly bounded as desired.

Now suppose that {F,(z)},-., is bounded for some/every z € T. Then
{F.(s)};-1 is bounded for every s € T. A theorem of Gottschalk and Hedlund 2]
then guarantees the existence of a continuous function g : T — R satisfying

glos)—g(s)=f(s) VseT
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Assume to the contrary that 3z € T with A(z}# 0. Letu,v € T be given by
u=lim,, ¢(x)and v =lim, ..- ¢(x). Then

g(u)—g(v)=lim (g(o"u) = F, (u)) - (8(s"v) ~ F. (v))
=lim (g(0"u) = g(o"v) + F, (v) = F, (u)

=0+, 8(z +ia).
-0
The last equality follows since g is uniformly continuous on T and the distance
between o"u and o"v approaches zero. Similarly.

gu)—g(v)=lim (g(o "u)+ F.(07"0))~(g(o "v)+ F.(0™"0))

=lim (g(0""v) = gl "))+ Fa (@ "v) = Fu(a "v)

=0~ 2 8(z +ia).

Therefore 2;-_. §(z + ia) = 0, contradiction! 4

If f(x)=lie(x). then §(0)= +1. 8(B)= —1 and 8(z) =0 elsewhere. Thus
A(z)=0 if and only if B € Za, yielding Kesten’s theorem. Likewise.if f(x)=
Liogi(X) = liy.y+p)(x), then A(z) =0 if and only if either B8 € Za or vy € Za. Thus
also the theorem of Furstenberg, Keynes and Shapiro is obtained as a special
case of Theorem A. It was in fact in [1} that an admissible function with two
discontinuities in an orbit was first considered.

It is interesting to note that in case {F, (x)};., is bounded, i.e. A(-)=0 (and
frf(z)dz = 0), we can in actuality explicitly construct the solution I : T >R to

fC)=I1(+a)=1()

that pushes forward to the unique, up to an additive constant, continuous
function I : T — R satisfying [(os)— [(s)= f(s); i.e. the theorem of Gottschalk
and Hedlund may be concretely realized.

Forlet d(z)=Z}.,8(z + ia). Since A(-)=0, d(z) vanishes for all but finitely
many z € T. Set s = 2,erd(z). Then let I(-) be right continuous with constant
slope s and jump ~d(z) at any z € T. This definition is valid since the sum of
jumps is cancelled by the change due to slope.

Now I(-+a)—1I(-) is a step function, with mean value zero. It remains to
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show only that it has the same discontinuities as f(-). But at any z €T,
[(++a)—I(-) has jump —d(z+a)+d(z)=-2.,8(z+ia)+2Z/..8(z)=
8(z). proving I(-+a)—I(-)=f(-) as desired. Since [ is continuous outside a
finite subset of U,c2(D +ia), I°¢ ' can be continuously extended to get the
solution [ guaranteed by the theorem by Gottschalk and Hedlund.

3. The minimality of (X, T)

The first step in proving Theorem B is to reduce to an admissible function with
single discontinuities:

ProposITION C. There exist continuous functions §,{: T—R such that
(1) §(s)—e(f)E G + Ga Vs € T, where the Ga component is independent of
s; and

) f(s)=flos)—1(s)+§(s).

ProOF. Let z,,---,z; €ER be representatives of D +(Z+Za) such that
0=z,<z,<--<z <Il.Define g:T—R by

8= 3 80+ ([ 1)z = 3 8@ -2)).

Then 8,(z;)=A(z;) and 8,(z)=0 for z&{z\, -+, z}. This holds also at zero
since 8, (0) = A(0)+ Zi-, A(zi) = A(0) + 2,7 8(z) = A(0). Thus A, (- )= 0. Since
also

f g(z)dz =f ftz)dz,
T T
we can write

f(x)-gx)=I(x+a)=l(x),

where [(-) is as in Section 2.

Now extend goe ' and le¢ ' continuously to § and I. Property 1 follows
since
{ i
20~ ([ fe)dz + 3 28)) = % M) )= D
for all x € T. Property 2 is obvious. O

The significance of e(f) can now be explained, as g must clearly be normalized
to have mean value equal to that of f.
We can now proceed with
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PrRoOF OF THEOREM B. Fix s€ T and let CC X be the closure of
{T"(5,0)}ncz. Forevery t€ T, let H)={g € E’I(t,g)E C}. H' = H. is directly
seen to be a (closed) group, of which the various H7's are then cosets. Writing
H.=h(t)+ H', we have that h: T— E'/H' is a continuous map satisfying

h(oty=h(t)+(f@y+H) WteT

This argument can be found in [4].

We claim G'C H'. For suppose to the contrary that A(z) & H' for some
z €T Let u,v € T be defined by u =lim,.. ¢(x)and v =lim,_.* ¢(x). As in
the proof of Theorem A, we then have

h(u)~h(v) =Y, 8(z +ia) + H',

while also

h(u)—h(v)= - D, 8(z +ia)Y+H',

=~

contradiction!

Now let § and [ be as in the proposition. Set G, = £/ geo’. Pick any
e € Range g (remember e —e(f) € G + Gar) and let V' C T be the set of limit
points of ne' as o"s approaches s. V' is a closed subgroup of T.

The heart of the proof is now exposed when we prove

V'+G'=H'"
For suppose first that {n.}i-; CN i‘s such that 0™s — s and me’— v € V'. Then
E. (s)=I(a™s)- I(s)+ G, (s).

Since

G.(s)-me' €G',
we have

F, (sY—v mod G’
(1 is continuous so I(g™s)— [(s)—0). Therefore

vEH'+G'=H'.
Similarly taking {my }i-1 C N such that c™s — s and F,., (s) — g € H', we have

gEV'+G'.



Vol. 42, 1982 ADMISSIBLE FUNCTIONS 359

Thus V'+ G'= H’ as desired.

Since (X, T) is minimal if and only if E' = H’, it remains to check only when
V'+ G’ equals E’. Suppose first that E = R. If G =R then of course G'=E".
Otherwise G is a rational lattice, and the condition is that e Q + Qa. This is
equivalent to the condition desired.

Now suppose that E is a rational lattice. Write

e =a+ ba,

where a,b € E. This decomposition (which is obviously unique since a is
irrational) can be derived either from the containment V' C E’, or more directly
as follows. Let

Y | I 2 2 ! 1
D—{Zh"',Zk,,ll,"‘,zkz,'",Zl,"‘,zk,}»

where zi,— z, € Za if and only if i = j. Referring to Example 1 below, we then
have for some ¢ € E

¢ k,

z;a(z';,,)+c)+2 20 D 8(zh)

i
= i=] m=

L f(z)dz +,le 2iA(z)) = (— | :2:‘

i i

kl
=c+Y D 8(z)zi—2,)EE +Ea.

m=2

To finish, we now need only verify that V' is the group generated by a’ and b'.
As V'is just the set of accumulation points of n(a + ba)' as na approaches zero
mod 1 (either from the right alone or from both sides), this is a simple exercise in
algebra left to the such inclined reader. O

ExaMPLE 1. Suppose now that f has only single discontinuities, that is
(D+ia)ND =B Vi#0.Let D ={zy,---,z;}, where 0=z, < z,<--- <z <.
Setting zo=0 and z.,; =1, let a; be the value of f on [z, 2z:v) for i =0, -, 1
Then

] f(z)dz = io ai(zie—zi)= 2‘ zi(a —a)ta

= - i z8(z)+ a.

im]

Thus

e(f)= L f(z)dz +2‘ z6(z:)=a.
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Of course for such f Proposition C is trivial, from which e(f) € Range f is also
clear. Therefore (X, T) is always minimal, as a; and G necessarily generate E.
Compare this with proposition 1.13.2 in [4], where minimality is proved if
A(z)=8(z) generates E for some z.

ExampLE 2. Let f(x)= ylpg(x), where B =ka mod1l. Then A(-)=0,
G ={0} and

e()= [ f(e)dz = 38 = ke

If v is irrational then E =R and (X, T) is minimal if and only if yka & Q +
Qa, ie. yE0Q +Ql/a. If y=p/q on the other hand, with (p,q)=1, then
e(f) = pka/q, so (X, T) is minimal if and only if (k,q)=1. It is a matter of
interest that these are also the conditions for the ergodicity of (X, T) (with respect
to Haar measure).
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