ADMISSIBLE FUNCTIONS WITH MULTIPLE DISCONTINUITIES

by ISHAI OREN

ABSTRACT

Let T be the unit circle, α irrational and $F: T \to R$ a step function. A necessary and sufficient condition for the skew of the α -rotation by f (considered as taking values mod 1) to be minimal is given. Also, the boundedness of $\sum_{i=1}^{n} f(x + i\alpha)$ $-n \int_{\pi} f(z) dz$ as $n \to \alpha$ is resolved.

1. Introduction

The concept of an admissible function has been very useful in the analysis of the dynamical nature of skew products (cf. [4], [3], [1]). One of the restrictions imposed on these functions is that there be a point of discontinuity whose orbit does not intersect the set of discontinuities at any other point. The purpose of this paper is to replace this condition by a more careful analysis of the net effect of the discontinuities along orbits. We shall work on the circle group, where admissible functions have been of greatest use.

Consider T = [0, 1) endowed with the compact group structure obtained from identification with \mathbf{R}/\mathbf{Z} , and let $\alpha \in T$ be irrational (α shall at times also be considered as an element of \mathbf{R}). Let $f: T \to \mathbf{R}$ be a step function, i.e. locally constant with a finite number of jump discontinuities. We shall adopt the convention that all step functions are continuous from the right. Define $\delta: \delta_f: T \to \mathbf{R}$ by

$$\delta(x) = f(x^{+}) - f(x^{-}) = \lim_{\varepsilon \to 0} f(x + \varepsilon) - f(x - \varepsilon),$$

and let $D = D_f = \{x \in T \mid \delta(x) \neq 0\}$. Since D is finite,

$$\Delta(x) = \Delta_f(x) = \sum_{i=-\infty}^{\infty} \delta_f(x+i\alpha)$$

Received May 3, 1981

is well defined for every $x \in T$. Finally, for n > 0 set $F_n(x) = \sum_{i=0}^{n-1} f(x + i\alpha)$.

The first and simpler of the two questions we deal with is the boundedness of $\{F_n(x) - n \int_T f(z) dz\}_{n=1}^{\infty}$ for some/every $x \in T$. The case $f(x) = 1_{\{0,\beta\}}(x)$ was first treated by Kesten, and $f(x) = 1_{\{0,\beta\}}(x) - 1_{\{\gamma,\gamma+\beta\}}(x)$ by Furstenberg, Keynes and Shapiro [1]. In fact, we have

THEOREM A. $\{F_n(x) - n \int_T f(z) dz\}_{n=1}^x$ is bounded for some/every $x \in T$ if and only if $\Delta(\cdot) \equiv 0$.

The theorems of Kesten and Furstenberg-Keynes-Shapiro follow as special cases of Theorem A.

To prove Theorem A we pass to the standard symbolic model in which f is made continuous. It is defined as follows: Let $A = \{v_1, \dots, v_k\}$ be the set of values taken by f. Let $\Omega = A^z$ be endowed with the product topology, and $\sigma : \Omega \to \Omega$ be the left shift, i.e. $\sigma(s)[i] = s[i+1], s \in \Omega, i \in \mathbb{Z}$. Define $\varphi : T \to \Omega$ by $\varphi(x)[i] = f(x + i\alpha)$, and let $\tilde{T} \subset \Omega$ be the closure of $\varphi(T)$.

Then \tilde{T} is invariant under σ , and (\tilde{T}, σ) is a minimal flow. The last follows most easily from the *uniform* density of the orbits $x, x + \alpha, \cdots$, in T. Lastly, define $\tilde{f}(s) = s[0]$ and $\tilde{F}_n(s) = \sum_{i=0}^{n-1} \tilde{f}(\sigma^i s)$.

The proof of Theorem A is a straightforward generalization of the methods used for admissible functions with simple discontinuities. The next result however departs more radically from this vein.

In what follows and throughout this paper if $Z \subseteq \mathcal{G} \subset \mathbb{R}$ is a group, then $\mathcal{G}' \subset T$ denotes the factor group \mathcal{G}/\mathbb{Z} considered as a subgroup of T. Similarly $\forall r \in \mathbb{R}, r' \in T$ is the coset $r + \mathbb{Z}$. $\mathcal{G}\alpha$ will denote the group scaled by a factor of α , unless $\mathcal{G} = \mathbb{Z}$, whence $(\mathbb{Z}\alpha)'$ is usually meant. Also, given any set of generators in \mathbb{R} or T, by the generated group we shall always mean the closed group generated by the set.

So let $E \subset \mathbf{R}$ be the group generated by the values of f and 1. Of course $E = \mathbf{R}$ unless f takes on only rational values, in which case E is a rational lattice. Set $X = \tilde{T} \times E'$ and define $T: X \to X$ by

$$T(s, y) = (\sigma s, y + f(s)').$$

We wish to determine the minimality of (X, T).

To this end let $G \subset \mathbf{R}$ be the group generated by $\{\Delta(z)\}_{z \in D} \cup \{1\}$. We define the *G*-essential value of f as the element of $\mathbf{R}/(G + G\alpha)$ given by

$$e(f) = \left(\int_T f(z)dz + \sum_{z+Z\alpha \in T/Z\alpha} z\Delta(z)\right) + G + G\alpha.$$

e(f) is determined by picking $z_1, \dots, z_i \in \mathbb{R}$ such that $z_i - z_j \notin \mathbb{Z}\alpha \mod 1$ for $i \neq j$, and $\forall z \in D$, $z - z_i \in \mathbb{Z}\alpha \mod 1$ for some *i*. Then $\int_T f(z) dz + \sum_{i=1}^{t} z_i \Delta(z_i)$ is independent of the choice of z_1, \dots, z_i up to an element of $G + G\alpha$, showing that e(f) is well defined. To avoid overly cumbersome notation, we shall consider e(f) as an element of \mathbb{R} , taking any representative. All calculations with e(f) will of course be eventually free of this choice.

A necessary and sufficient condition for (X, T) to be minimal can now be given as

THEOREM B. (X, T) is minimal if and only if for every proper closed subgroup $G \subseteq S \subsetneq E$, $e(f) \notin S + S\alpha$.

The minimality condition can be less cleanly but more clearly stated as follows. If $E = \mathbf{R}$ then (X, T) is minimal if and only if either $G = \mathbf{R}$ or $e(f) \notin Q + Q\alpha$. In case E is a rational lattice, we shall see that one can always write $e(f) = a + b\alpha$, with $a, b \in E$. The condition is then that a, b and G generate E.

The paper is organized as follows. Theorem A is proved in section 2. Section 3 starts with Proposition C, which provides a decomposition of $f(\cdot)$ that makes clear the significance of e(f). Theorem B is then proved, followed by some examples, the first of which being the demonstration that if f has only single discontinuities, then (X, T) is always minimal.

2. When is $\{F_n(x) - n \int_T f(z) dz\}_{n=1}^{\infty}$ bounded?

PROOF OF THEOREM A. We may assume without loss of generality that $\int_T f(z) dz = 0$. Then suppose first that $\Delta(z) = 0 \quad \forall z \in T$. Let $K \ge 0$ be minimal such that $(D + i) \cap D = \emptyset \quad \forall i \ge K$. For $n \ge 2K$ let $D_n \subset T$ be the set of points at which $F_n(\cdot)$ is discontinuous. Obviously $D_n \subset \bigcup_{i=0}^{n-1} (D - i\alpha)$. We claim in fact that $D_n \subset \bigcup_{i=0}^{k-1} (D - i\alpha) \cup \bigcup_{i=n-k}^{n-1} (D - i\alpha)$. For this it suffices to show that $D_n \cap \bigcup_{i=k}^{n-k-1} (D - i\alpha) = \emptyset$. But if $x \in \bigcup_{i=k}^{n-k-1} (D - i\alpha)$, then $\sum_{i=0}^{n-1} \delta(x + i\alpha) = \sum_{i=k}^{\infty} \delta(x + i\alpha) = 0$. Thus $x \notin D_n$.

The above shows that $F_n(\cdot)$ has at most 2K |D| discontinuities, the jumps at which belong to a finite set. Since $\int_T F_n(z) dz = 0$, this implies that the F_n 's are uniformly bounded as desired.

Now suppose that $\{F_n(z)\}_{n=1}^{*}$ is bounded for some/every $z \in T$. Then $\{\tilde{F}_n(s)\}_{n=1}^{*}$ is bounded for every $s \in \tilde{T}$. A theorem of Gottschalk and Hedlund [2] then guarantees the existence of a continuous function $g: \tilde{T} \to \mathbb{R}$ satisfying

$$g(\sigma s) - g(s) = \tilde{f}(s) \quad \forall s \in \tilde{T}.$$

$$g(u) - g(v) = \lim_{n \to \infty} (g(\sigma^n u) - \hat{F}_n(u)) - (g(\sigma^n v) - \hat{F}_n(v))$$
$$= \lim_{n \to \infty} (g(\sigma^n u) - g(\sigma^n v)) + \hat{F}_n(v) - \tilde{F}_n(u)$$
$$= 0 + \sum_{i=0}^{v} \delta(z + i\alpha).$$

The last equality follows since g is uniformly continuous on \overline{T} and the distance between $\sigma^{n}u$ and $\sigma^{n}v$ approaches zero. Similarly,

$$g(u) - g(v) = \lim_{n \to \infty} \left(g(\sigma^{-n}u) + \tilde{F}_n(\sigma^{-n}v) \right) - \left(g(\sigma^{-n}v) + \tilde{F}_n(\sigma^{-n}v) \right)$$
$$= \lim_{n \to \infty} \left(g(\sigma^{-n}v) - g(\sigma^{-n}v) \right) + \tilde{F}_n(\sigma^{-n}v) - \tilde{F}_n(\sigma^{-n}v)$$
$$= 0 - \sum_{i=-\infty}^{-1} \delta(z + i\alpha).$$

Therefore $\sum_{i=-\infty}^{\infty} \delta(z + i\alpha) = 0$, contradiction!

If $f(x) = 1_{\{0,\beta\}}(x)$, then $\delta(0) = +1$, $\delta(\beta) = -1$ and $\delta(z) = 0$ elsewhere. Thus $\Delta(z) = 0$ if and only if $\beta \in \mathbb{Z}\alpha$, yielding Kesten's theorem. Likewise, if $f(x) = 1_{\{0,\beta\}}(x) - 1_{\{\gamma,\gamma+\beta\}}(x)$, then $\Delta(z) = 0$ if and only if either $\beta \in \mathbb{Z}\alpha$ or $\gamma \in \mathbb{Z}\alpha$. Thus also the theorem of Furstenberg, Keynes and Shapiro is obtained as a special case of Theorem A. It was in fact in [1] that an admissible function with two discontinuities in an orbit was first considered.

It is interesting to note that in case $\{F_n(x)\}_{n=1}^{\times}$ is bounded, i.e. $\Delta(\cdot) \equiv 0$ (and $\int_T f(z) dz = 0$), we can in actuality explicitly construct the solution $l: T \to \mathbb{R}$ to

$$f(\cdot) \equiv l(\cdot + \alpha) - l(\cdot)$$

that pushes forward to the unique, up to an additive constant, continuous function $\tilde{l}: \tilde{T} \to \mathbf{R}$ satisfying $\tilde{l}(\sigma s) - \tilde{l}(s) \equiv \tilde{f}(s)$; i.e. the theorem of Gottschalk and Hedlund may be concretely realized.

For let $d(z) = \sum_{i=0}^{\infty} \delta(z + i\alpha)$. Since $\Delta(\cdot) \equiv 0$, d(z) vanishes for all but finitely many $z \in T$. Set $s = \sum_{z \in T} d(z)$. Then let $l(\cdot)$ be right continuous with constant slope s and jump -d(z) at any $z \in T$. This definition is valid since the sum of jumps is cancelled by the change due to slope.

Now $l(\cdot + \alpha) - l(\cdot)$ is a step function, with mean value zero. It remains to

show only that it has the same discontinuities as $f(\cdot)$. But at any $z \in T$, $l(\cdot + \alpha) - l(\cdot)$ has jump $-d(z + \alpha) + d(z) = -\sum_{i=1}^{\infty} \delta(z + i\alpha) + \sum_{i=0}^{\infty} \delta(z) = \delta(z)$, proving $l(\cdot + \alpha) - l(\cdot) \equiv f(\cdot)$ as desired. Since *l* is continuous outside a finite subset of $\bigcup_{i \in \mathbb{Z}} (D + i\alpha)$, $l \circ \varphi^{-1}$ can be continuously extended to get the solution \tilde{l} guaranteed by the theorem by Gottschalk and Hedlund.

3. The minimality of (X, T)

The first step in proving Theorem B is to reduce to an admissible function with single discontinuities:

PROPOSITION C. There exist continuous functions $\tilde{g}, \tilde{l}: \tilde{T} \to \mathbb{R}$ such that

(1) $\tilde{g}(s) - e(f) \in G + G\alpha \quad \forall s \in \tilde{T}$, where the $G\alpha$ component is independent of s; and

(2) $\tilde{f}(s) \equiv \tilde{f}(\sigma s) - \tilde{l}(s) + \tilde{g}(s)$.

PROOF. Let $z_1, \dots, z_t \in \mathbf{R}$ be representatives of $D + (\mathbf{Z} + \mathbf{Z}\alpha)$ such that $0 \le z_1 < z_2 < \dots < z_t < 1$. Define $g: T \to \mathbf{R}$ by

$$g(x) = \sum_{i=1}^{l} \Delta(z_i) \mathbb{1}_{[z_i,1]}(x) + \left(\int_T f(z) dz - \sum_{i=1}^{l} \Delta(z_i) (1-z_i) \right) \, .$$

Then $\delta_g(z_i) = \Delta(z_i)$ and $\delta_g(z) = 0$ for $z \notin \{z_1, \dots, z_l\}$. This holds also at zero since $\delta_g(0) = \Delta(0) + \sum_{i=1}^l \Delta(z_i) = \Delta(0) + \sum_{z \in T} \delta(z) = \Delta(0)$. Thus $\Delta_{f-g}(\cdot) \equiv 0$. Since also

$$\int_{T} g(z)dz = \int_{T} f(z)dz,$$

we can write

$$f(x)-g(x)\equiv l(x+\alpha)-l(x),$$

where $l(\cdot)$ is as in Section 2.

Now extend $g \circ \varphi^{-1}$ and $l \circ \varphi^{-1}$ continuously to \tilde{g} and \tilde{l} . Property 1 follows since

$$g(x) - \left(\int_{T} f(z) dz + \sum_{i=1}^{l} z_i \Delta(z_i)\right) = \sum_{i=1}^{l} \Delta(z_i) (1_{[z_i,1]}(x) - 1)$$

for all $x \in T$. Property 2 is obvious.

The significance of e(f) can now be explained, as g must clearly be normalized to have mean value equal to that of f.

We can now proceed with

PROOF OF THEOREM B. Fix $s \in \tilde{T}$ and let $C \subset X$ be the closure of $\{T^n(s,0)\}_{n\in\mathbb{Z}}$. For every $t \in \tilde{T}$, let $H'_i = \{g \in E' \mid (t,g) \in C\}$. $H' = H'_s$ is directly seen to be a (closed) group, of which the various H'_i 's are then cosets. Writing $H'_i = h(t) + H'$, we have that $h : \tilde{T} \to E'/H'$ is a continuous map satisfying

$$h(\sigma t) = h(t) + (\tilde{f}(t)' + H') \qquad \forall t \in \tilde{T}.$$

This argument can be found in [4].

We claim $G' \subset H'$. For suppose to the contrary that $\Delta(z)' \notin H'$ for some $z \in T$. Let $u, v \in \tilde{T}$ be defined by $u = \lim_{x \to z} \varphi(x)$ and $v = \lim_{x \to z^+} \varphi(x)$. As in the proof of Theorem A, we then have

$$h(u)-h(v)=\sum_{i=0}^{\infty}\delta(z+i\alpha)'+H',$$

while also

$$h(u)-h(v)=-\sum_{i=-\infty}^{-1}\delta(z+i\alpha)'+H',$$

contradiction!

Now let \tilde{g} and \tilde{l} be as in the proposition. Set $\tilde{G}_n = \sum_{i=0}^{n-1} \tilde{g} \circ \sigma^i$. Pick any $e \in \text{Range } \tilde{g}$ (remember $e - e(f) \in G + G\alpha$) and let $V' \subset T$ be the set of limit points of ne' as $\sigma^n s$ approaches s. V' is a closed subgroup of T.

The heart of the proof is now exposed when we prove

$$V' + G' = H'.$$

For suppose first that $\{n_k\}_{k=1}^{\infty} \subset N$ is such that $\sigma^{n_k} s \to s$ and $n_k e' \to v \in V'$. Then

$$\tilde{F}_{n_k}(s) = \tilde{l}(\sigma^{n_k}s) - \tilde{l}(s) + \tilde{G}_{n_k}(s).$$

Since

$$\tilde{G}_{n_k}(s)-n_ke'\in G',$$

we have

 $\tilde{F}_{n_k}(s)' \to v \mod G'$

 $(\tilde{l} \text{ is continuous so } \tilde{l}(\sigma^{n_k}s) - \tilde{l}(s) \rightarrow 0)$. Therefore

$$v \in H' + G' = H'.$$

Similarly taking $\{m_k\}_{k=1}^{\infty} \subset \mathbb{N}$ such that $\sigma^{m_k} s \to s$ and $\tilde{F}_{m_k}(s)' \to g \in H'$, we have

$$g \in V' + G'$$
.

Thus V' + G' = H' as desired.

Since (X, T) is minimal if and only if E' = H', it remains to check only when V' + G' equals E'. Suppose first that $E = \mathbb{R}$. If $G = \mathbb{R}$ then of course G' = E'. Otherwise G is a rational lattice, and the condition is that $e \notin Q + Q\alpha$. This is equivalent to the condition desired.

Now suppose that E is a rational lattice. Write

$$e = a + b\alpha$$
,

where $a, b \in E$. This decomposition (which is obviously unique since α is irrational) can be derived either from the containment $V' \subset E'$, or more directly as follows. Let

$$D = \{z_1^1, \cdots, z_{k_1}^1, z_1^2, \cdots, z_{k_2}^2, \cdots, z_1^l, \cdots, z_k^l\},\$$

where $z_m^i - z_n^i \in \mathbb{Z}\alpha$ if and only if i = j. Referring to Example 1 below, we then have for some $c \in E$

$$\int_{T} f(z)dz + \sum_{i=1}^{l} z_{1}^{i}\Delta(z_{1}^{i}) = \left(-\sum_{i=1}^{l} \sum_{m=1}^{k_{i}} z_{m}^{i}\delta(z_{m}^{i}) + c\right) + \sum_{i=1}^{l} z_{1}^{i} \sum_{m=1}^{k_{i}} \delta(z_{m}^{i})$$
$$= c + \sum_{i=1}^{l} \sum_{m=2}^{k_{i}} \delta(z_{m}^{i})(z_{1}^{i} - z_{m}^{i}) \in E + E\alpha.$$

To finish, we now need only verify that V' is the group generated by a' and b'. As V' is just the set of accumulation points of $n(a + b\alpha)'$ as $n\alpha$ approaches zero mod 1 (either from the right alone or from both sides), this is a simple exercise in algebra left to the such inclined reader.

EXAMPLE 1. Suppose now that f has only single discontinuities, that is $(D + i\alpha) \cap D = \emptyset \ \forall i \neq 0$. Let $D = \{z_1, \dots, z_l\}$, where $0 \leq z_1 < z_2 < \dots < z_l < 1$. Setting $z_0 = 0$ and $z_{l+1} = 1$, let a_i be the value of f on $[z_i, z_{i+1})$ for $i = 0, \dots, l$. Then

$$\int_{T} f(z) dz = \sum_{i=0}^{l} a_i (z_{i+1} - z_i) = \sum_{i=1}^{l} z_i (a_{i-1} - a_i) + a_i$$
$$= -\sum_{i=1}^{l} z_i \delta(z_i) + a_l.$$

Thus

$$e(f) = \int_T f(z)dz + \sum_{i=1}^l z_i\delta(z_i) = a_l.$$

I. OREN

Of course for such f Proposition C is trivial, from which $e(f) \in \text{Range } f$ is also clear. Therefore (X, T) is always minimal, as a_i and G necessarily generate E. Compare this with proposition 1.13.2 in [4], where minimality is proved if $\Delta(z) = \delta(z)$ generates E for some z.

EXAMPLE 2. Let $f(x) = \gamma \mathbf{1}_{[0,\beta]}(x)$, where $\beta = k\alpha \mod 1$. Then $\Delta(\cdot) \equiv 0$, $G = \{0\}$ and

$$e(f) = \int_T f(z) dz = \gamma \beta = \gamma k \alpha.$$

If γ is irrational then $E = \mathbf{R}$ and (X, T) is minimal if and only if $\gamma k \alpha \notin Q + Q\alpha$, i.e. $\gamma \notin Q + Q1/\alpha$. If $\gamma = p/q$ on the other hand, with (p,q) = 1, then $e(f) = pk\alpha/q$, so (X, T) is minimal if and only if (k,q) = 1. It is a matter of interest that these are also the conditions for the ergodicity of (X, T) (with respect to Haar measure).

References

1. H. Furstenberg, H. Keynes and L. Shapiro, Prime flows in topological dynamics, Isr. J. Math. 14 (1973), 26-38.

2. W. H. Gottschalk and G. A. Hedlund, *Topological dynamics*, Am. Math. Soc. Colloq, Vol. 36, Providence, RI, 1955.

3. K. Peterson and L. Shapiro, Induced flows, Trans. Am. Math. Soc. 177 (1973), 375-390.

4. W. A. Veech, Topological dynamics, Bull. Am. Math. Soc. 83 (1977), 775-830.

19, HASAVION ST. Rehovot, Israel