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ADMISSIBLE FUNCTIONS 
WITH MULTIPLE DISCONTINUITIES 

BY 

ISHAI OREN 

ABSTRACT 

Let T be the unit circle, a irrational and F : T -~, R a step function. A necessary 
and sufficient condition for the skew of the a-rotation by f (considered as taking 
valu~ mod 1) to be minimal is given. Also, the boundedness of YT= ~ f(x + ia) 
-nf~f(z)dz as n--*t~ is resolved. 

I. Introduction 

The concept  of an admissible function has been  very useful in the analysis of 

the dynamical  nature  of skew products  (cf. [4], [3], [1]). One  of the restrictions 

imposed  on these functions is that  there  be a point  of discontinuity whose orbit  

does not intersect the set of discontinuities at any o ther  point.  The  purpose  of 

this paper  is to replace this condit ion by a more  careful analysis of the net effect 

of the discontinuities along orbits. We shall work  on the circle group,  where  

admissible functions have been of greates t  use. 

Consider  T = [0, 1) endowed  with the compac t  group structure ob ta ined  f rom 

identification with R/Z,  and let a E T be irrat ional  (a  shall at t imes also be 

considered as an e lement  of R). Le t  f :  T--* R be a step function, i.e. locally 

constant  with a finite n u m b e r  of j u m p  discontinuities.  We shall adop t  the 

convent ion  that  all s tep functions are cont inuous f rom the right. Define 

8 : 8: : T - - ~ R  by 

8(x ) = f (x  +)- f (x  - )= lim f (x  + e ) -  f (x  - e ), 
�9 ~ 1 . 0  

and let D = D  I = { x  E T I S ( x ) r  }. Since D is finite, 

A(x)=A:(x)= ~ 8~(x+ia) 
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is well defined for every x E T. Finally, for n > 0 set F, (x) = ).?.;L,', f(x + ia ). 
The first and simpler of the two questions we deal with is the boundedness of 

{F, ( x ) -  n fTf(z)dz}"~-, for some/every x E T. The case f (x)  = ll,,.~l(x) was first 

treated by Kesten, and f ( x )= l t , ,~l(x)- ll~.**~l(x) by Furstenberg, Keynes and 

Shapiro [1]. In fact. we have 

THEOREM A. {F. ( x ) - n  frf(z)dz}~_, is bounded for some~every x E T if 
and only if A(. ) =_ O. 

The theorems of Kesten and Furstenberg-Keynes-Shapiro follow as special 

cases of Theorem A. 

To prove Theorem A we pass to the standard symbolic model in which f is 

made continuous. It is defined as follows: Let A = {v~,.. ",ok} be the set of 

values taken by f. Let 12= A z be endowed with the product topology, and 

o" : 12~12 be the left shift, i.e. o '(s)[i]  = s[i + 1], s El2,  i E Z .  Define ~0 : T---, 12 

by ~o(x)[i]=f(x +ia), and let ] ' C I I  be the closure of ~(T) .  

Then 1~ is invariant under or, and (7 ~, or) is a minimal flow. The last follows 

most easily from the uniform density of the orbits x, x + a , ' . . ,  in T. Lastly, 

define f(s) = s[01 and L (s) = ETa, ~, f(tr's). 
The proof of Theorem A is a straightforward generalization of the methods 

used for admissible functions with simple discontinuities. The next result 

however departs more radically from this vein. 

In what follows and throughout this paper if Z C ~3 C R is a group, then 

cg'C T denotes the factor group ~/Z considered as a subgroup of T. Similarly 

Vr E R, r' E T is the coset r + Z. ~3a will denote the group scaled by a factor of 

a, unless ~3 = Z, whence (Za) '  is usually meant. Also, given any set of generators 

in R or T, by the generated group we shall always mean the closed group 

generated by the set. 

So let E C R be the group generated by the values of f and 1. Of course E = R 

unless f takes on only rational values, in which case E is a rational lattice. Set 

X = T •  and define T : X - - ~ X  by 

T(s, y) = (o's, y + f(s)'). 

We wish to determine the minimality of (X, T). 

To this end let G C R be the group generated by {A(z)}~D U {1}. We define 

the G-essential value of f as the element of R/(G + Ga) given by 

e ( / ) =  , j r  ( f  [ ( z )dz+ ~ z A(z))+ G +  Ga. 
z * Z a ~ T / Z ~  
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e (f) is determined by picking z, , .  �9 z~ E R such that z, - zj ~ Za  mod 1 for i • j, 

and V z E D ,  z - z i E Z c t  m o d l  for some i. Then f r f ( z )dz+El . lZ iA(z~)  is 

independent of the choice of z,,- �9 -, z~ up to an element of G + Ga, showing that 

e0  r) is well defined. To avoid overly cumbersome notation, we shall consider 

e(f) as an element of R, taking any representative. All calculations with e( f )  will 

of course be eventually free of this choice. 

A necessary and sufficient condition for (X, T) to be minimal can now be given 

as  

THEOREM B. (X, T) is minimal if and only if for every proper closed subgroup 
G C _ S ~ E ,  e ( f ) E S  + Sa. 

The minimality condition can be less cleanly but more clearly stated as 

follows. If E = R  then (X ,T)  is minimal if and only if either G = R  or 

e ( f )E  0 + Oa. In case E is a rational lattice, we shall see that one can always 

write e ( f ) =  a +ha, with a,b E E. The condition is then that a, b and G 

generate E. 

The paper is organized as follows. "l-heorem A is proved in section 2. Section 3 

starts with Proposition C, which provides a decomposition of f ( -  ) that makes 

clear the significance of e(f).  Theorem B is then proved, followed by some 

examples, the first of which being the demonstration that if f has only single 

discontinuities, then (X, T) is always minimal. 

2. When is { F , ( x ) -  n frf(z)dz}~,=, bounded? 

PROOF OF THEOREM A. We may assume without loss of generality that 

f r f ( z ) d z  = 0. Then suppose first that A(z) = 0 Vz E T. Let K - 0 be minimal 

such that (D + i ) n  D = O Vi => K. For n => 2K let D, C T be the set of points 

at which F, ( - ) i s  discontinuous. Obviously/9,  C U~'=,i (D - ia ). We claim in fact 

that D. c U ~ - , i ( D - i a ) u U ~ = ~ - k ( D - i a ) .  For this it suffices to show that 

D. AU~'=~-~(D - ia) = 0 .  But if xEU"-kI(D--ict),,=k then X,"I6(x+=,, ia)= 

EL -~ 6 (x + ict ) = 0. Thus x ~ D..  

The above shows that F. ( . )  has at most 2K I D I discontinuities, the jumps at 

which belong to a finite set. Since f rF .  (z)dz = 0, this implies that the /7 , ' s  are 

uniformly bounded as desired. 

Now suppose that {F, (z )}~,~l is bounded for some/every z ET .  Then 

{if'. (s)}.~L is bounded for every s E T. A theorem of Gottschalk and Hedlund [2] 

then guarantees the existence of a continuous function g : l r ' ~  R satisfying 

g( , , ' s ) -  g(s )  = f ( s )  Vs 'i'. 
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Assume to the contrary that 3z  E T with ..X(z)r 0. Let u,v E T be given by 

u = limx_~ ~r and v = limx .:. ~r "[hen 

g(u ) -  g(v ) = !ira (g(cr"u ) -  F. (u ))-  (g (6r"v) - /~ .  (v)) 

= !i_m (g (~"u)  - g (~"v))  + #.  (v)  - te  (u )  

= 0 +  ~ a(z + ia). 
i -11  

The last equality follows since g is uniformly continuous on 7' and the distance 

between cr"u and ~r"v approaches zero. Similarly. 

g(u ) - g(v ) = !im (g(o, "u ) + F. (cr-"v ))-  (g(o, "v ) + I:. (~r-"v)) 

= lim 

= 0 -  

Therefore  X'r 8(z + ia) 
If f (x )= lt,,.vl(X), then 

(g (c r - "v ) -  g(~  "v))+ 16. ( c r - "v ) -  F, (or "v) 

~ ~(z + ia). 
i =  -s 

= 0, contradiction! []  

~5 (0) = + I. ~ ([3) = - 1 and ~5 (z) = 0 elsewhere. Thus 

A ( z ) ~ 0  if and only if [3 EZa.  yielding Kesten's theorem. Likewise. if f ( x ) =  

lt..~l(x ) -  lt~.,,~l(x), then A(z)-=0 if and only if either [3 E Z a  or y ~ Z a .  Thus 

also the theorem of Furstenberg, Keynes and Shapiro is obtained as a special 

case of Theorem A. It was in fact in [l] that an admissible function with two 

discontinuities in an orbit was first considered. 

It is interesting to note that in case {F, (x)}~,., is bounded, i.e. A(. )-=0 (and 

.frf(z)dz = 0), we can in actuality explicitly construct the solution 1 : T--~ R to 

f ( ' ) - - l ( ' + a ) - l ( ' )  

that pushes forward to the unique, up to an additive constant, continuous 

function [ : "i'---, R satisfying [(o-s)- [(s) - f(s) ;  i.e. the theorem of Gottschaik 

and Hedlund may be concretely realized. 

For let d(z) = XT.,,~(z + ia). Since A(. )--= 0, d(z) vanishes for all but finitely 

many z E T. Set s = Yzerd(z) .  "lhen let l ( .  ) be right continuous with constant 

slope s and jump - d(z) at any z E T. q'his definition is valid since the sum of 

jumps is cancelled by the change due to slope. 

Now l( .  + o ~ ) - l ( . )  is a step function, with mean value zero. It remains to 
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show only that it has the same discontinuities as f ( . ) .  But at any z E T, 

l ( . + a ) - l ( . )  has jump - d ( z  + a ) + d ( z ) =  - E L ~ 6 ( z  + i a ) + E L . 6 ( z ) =  

6(z),  proving I(. + a ) -  I ( . ) - = f ( . )  as desired. Since / is continuous outside a 

finite subset of U,~z (D + ia), l o ~ ' can be continuously extended to get the 

solution [ guaranteed by the theorem by Gottschalk and Hedlund. 

3. The minimality of (X, T) 

The first step in proving Theorem B is to reduce to an admissible function with 

single discontinuities: 

PRoPosmo.'~ C. There exist continuous functions ~, [ : i"--~ R such that 
(1) ~ , ( s ) - e ( f )E  G + Ga Vs E :F, where the Ga component is independent of 

s ; and 

(2) f ( s ) - f t o ' s ) -  [(s)+ ~,(s). 

PROOF. Let z , , ' " , z ~ E R  be representatives of D + ( Z + Z a )  such that 

O<=z, < z 2 < . . . <  z~ < l. Define g : T--*R by 

(f, ) g ( x t =  a ( z , ) h , , . . ( x ) +  f(z)dz - ~ A ( z , ) ( l  - z ,)  . 
i - I  I = l  

Then ~ ( z , ) =  2~(z,) and ~ , ( z ) =  0 for z f f{z , , . . . , z~}.  This holds also at zero 

since ~ (0) = 4(0) + 521 =, A(z~ ) = .~(0) + Y~, ~ T ~ (z) = A(0). Thus A I_~ ( - )  ------ 0. Since 

also 

we can write 

fT g(z)dz = fT f{z)dz, 

f ( x ) -  g(x)=- l(x + a ) -  l(x), 

where l( .  ) is as in Section 2. 

Now extend g o r and l o r 

since 

-' continuously to ~ and /. Property 1 follows 

( f , )  g ( x ) -  f (z )dz  + ~ z,h(z,)  = ~ A(z,)(ltz,.tl(x)- 1) 
i = l  i = l  

for all x E T. Property 2 is obvious. [] 

The significance of e (f) can now be explained, as g must clearly be normalized 

to have mean value equal to that of f. 

We can now proceed with 
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PROOF OF THEOREM B. Fix s U 1~' and let C C X be the closure of 

{T"(s,0)},~z. For every t E 'F, let H ' ,=  {g E E ' l ( t , g ) ~  C}. H ' =  H', is directly 

seen to be a (closed) group, of which the various H','s are then cosets. Writing 
t H , - h ( t ) +  H', we have that h" 7"--~E'/H' is a continuous map satisfying 

h(o't)=h(t)+t](t)'+H') u 

This argument can be found in [4]. 

We claim G'C H'. For suppose to the contrary that A ( z ) ' ~ H '  for some 

z E T. Let u, v E i '  be defined by u = lim,_, q~(x) and v = l i m , ~ ,  q~(x). As in 

the proof of Theorem A, we then have 

h ( u ) -  h(v)= ~ ~(z + ia)' + H', 
i=O 

while also 

- I  

h ( u ) - h ( v ) = -  ~'~ 8(z+iet) '+H',  

contradiction! 

Now let ~ and [ be as in the proposition. Set (~, "-' o "~. = Y-~-0 ~ o Pick any 

e E Range ~ (remember e - e([)E G + Ga) and let V 'C T be the set of limit 

points of he' as tr"s approaches s. V' is a closed subgroup of T. 

The heart of the proof is now exposed when we prove 

V ' + G ' = H ' .  

For suppose first that {nk}~=, C N is such that o'"~s ~ s and me'---* v E V'. Then 

#.~(s)  = [(o'"~s)- [is)+ d.~(s ) .  

Since 

we have 

t~,~ (s ) - nke' E G', 

P ,k(s ) '~v  mod G '  

([ is continuous so [(tr"ks)- [(s)~O). Therefore  

v E H ' + G ' = H ' .  

Similarly taking {ink }~-i C N such that o."~s ~ s and P,,~ (s)' ~ g E H ' ,  we have 

g E  V '+G' .  
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Thus V' + G '  = H' as desired. 

Since (X, T) is minimal if and only if E ' =  H ' ,  it remains to check only when 

V ' +  G '  equals E ' .  Suppose first that E = R. If G = R then of course G ' =  E ' .  

Otherwise G is a rational lattice, and the condition is that e ~ O + Oa.  This is 

equivalent to the condition desired. 

Now suppose that E is a rational lattice. Write 

e = a + ba, 

where a,b E E. This decomposition (which is obviously unique since a is 

irrational) can be derived either from the containment V' C E ' ,  or more directly 

as follows. Let 

D = { z l , . . . , z k , , '  z~,'",z~,,'". ,zll, "'',z~,}, 

where z/,. - z ' . ~  Z a  if and only if i = j. Referring to Example 1 below, we then 

have for some c ~ E 

f (z)dz  + ~'~ z i I A ( Z / I )  ~ i i i : - z.SCz )+c z ,  
i : l  i=1  r n = l  i = l  r a = l  

I k t 

=c+Y  
i = l  m ~ 2  

To finish, we now need only verify that V' is the group generated by a '  and b'. 

As V' is just the set of accumulation points of n (a + ha) '  as na  approaches zero 

mod 1 (either from the right alone or from both sides), this is a simple exercise in 

algebra left to the such inclined reader. [] 

EXAMPLE 1. Suppose now that f has only single discontinuities, that is 

(D + ia)fq D = f~ V i#  O. Let D = {Zl," " ' ,zt},  where 0_-< zt < z 2 < ' "  < zt < 1. 

Setting Zo = 0 and zt+l = 1, let a, be the value of ]" on [z,, z~.~) for i = 0,. �9 -, I. 

Then 

fT  | 1 f ( z )dz  = ~ a,(z~§ z , ) :  ~ z i (aj_ , -a , )+ a, 
i = 0  i = l  

I 
= 

i-I 

Thus 

e ( f )  = f (z  )dz + ~, z~8 ( z , )  = at. 
i ' l  
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Of course for such f Proposition C is trivial, from which e f t ) E  Range f is also 

clear. Therefore (X, T) is always minimal, as a~ and G necessarily generate E. 

Compare this with proposition 1.13.2 in [4], where minimality is proved if 

A(z) = ~ (z) generates E for some z. 

EXAMPLE 2. 

G = {0} and 

Let f(x)='Ylto,~](x ), where /3 = ka mod 1. Then A ( . ) = 0 ,  

e([)= L f(z)dz = 3'/3 = 7ka. 

If 7 is irrational then E = R and (X, T) is minimal if and only if 7ka ~ Q + 
Qa, i.e. 7~Q+Q1/a .  If y=p/q  on the other hand, with (p ,q)- -  1, then 

e([)=pka/q, so (X, T) is minimal if and only if ( k , q ) =  1. It is a matter of 

interest that these are also the conditions for the ergodicity of (X, T) (with respect 

to Haar measure). 
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